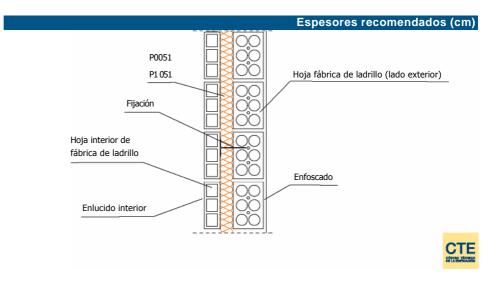
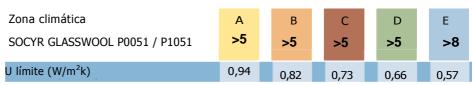


P0051 Panel fieltro

Memoria descriptiva ___m² aislamiento de lana de vidrio de clase MW-039 UNE-EN 13162, de espesor ____ mm, resistencia térmica___ m²K/w de la serie SOCYR GLASSWOOL P0051 panel fieltro, colocado sin adherir o con fijaciones mecánicas.




Memoria descriptiva ___m² aislamiento de lana de vidrio revestida de papel Kraft como barrera de vapor tipo Z3 y clase MW-039 UNE-EN 13162, de espesor ____mm, resistencia térmica ____m²K/w de la serie SOCYR GLASSWOOL P1051 panel papel, colocado sin adherir o con fijaciones mecánicas.

2.2. Aislante intermedio en paredes de doble hoja de fábrica con revoco exterior

Descripción del sistema

Utilizado frecuentemente en construcciones nuevas para cualquier tipo de climatología. Compuesto por fachadas de doble hoja de fábrica (cerámica u hormigón), la exterior portante y la interior de cerramiento y protección, con inclusión del aislante entre las mismas, con lo que se minimiza la transmisión del calor y se proporcionan cerramientos con inercias térmicas, amortiguaciones y desfases de la onda térmica moderados.

Los puentes térmicos integrados (pilares, contornos de huecos, cajas de persiana,...) deben poseer un aislamiento mínimo de 3 cm.

Ventajas

- Gracias a la estructura filamentosa de la lana, encierra aire en su interior proporcionando aislamiento térmico. Debido a su colocación en fachadas, como aislamiento intermedio, permite reducir la demanda energética del edificio, y mejorar el confort del usuario.
- Gracias también a la porosidad abierta de la lana, asegura su eficacia acústica, aumentando el índice de aislamiento acústico del sistema constructivo de doble hoja de fábrica con aislamiento intermedio.
- Gracias a la no capilaridad de la lana, y al estar además el sistema protegido por un revoco exterior, hace que sea estanco al agua.

Instalación

- 1. Cuando ya esté construida la primera hoja del cerramiento, se colocará sobre ésta el panel escogido, el cual irá fijado mecánicamente a la fábrica de obra o simplemente apoyado. Se recomienda rellenar completamente el espacio disponible entre las dos paredes para asegurar el máximo aislamiento y la inmovilidad de los paneles.
- 2. Una vez colocado el material aislante, se procederá a la construcción de la segunda hoja de fábrica de ladrillo. Esta técnica permite un incremento importante de ahorro de energía en cuanto a aislamiento térmico, puesto que reduce las pérdidas de calor en las partes más frías de la vivienda además de aumentar el nivel de aislamiento acústico.

NOTA: se utiliza el P0051 Panel Fieltro cuando la barrera de vapor no sea necesaria o el P1051 Panel Papel cuando sea necesaria.

Valores de aislamiento

1/2 pie ladrillo + P1 051 + LH (15)									
Espesor aislante	Índice a	Índice aisl. acústico R (dB)			Coef. trans. térmica U (W/m²·K)				
d (mm)	LM (15)	LP (15)	LH (15)	LM (15)	LP (15)	LH (15)			
50	57	56	53	0,56	0,55	0,52			
60	58	57	54	0,50	0,49	0,46			
75	59	58	55	0,43	0,42	0,40			

L/2	pie	lad	rillo	+	P0051	+	LH ((15))

Es	pesor aislante	Indic	e aisl. acusti	co R (dB)	Coef. trans. termica U (W/m²·K)		
	d (mm)	LM (15) LP (15)	LH (15)	LM (15)	LP (15)	LH (15)
	60	56	54	57	0,50	0,44	0,49
	75	57	55	58	0,43	0,42	0,42

LM = ladrillo macizo / LP = Ladrillo perforado / LH = ladrillo hueco / (15) = 1/2 pie

^{**}Valores de U calculados de acuerdo con UNE EN ISO 6946

^{*}Valores de R estimados de acuerdo con UNE EN 12354